Written by Timm Hoeres, Markus Horneber and the CAM-Cancer Consortium.
Updated July 13, 2016

Dichloroacetate

Does it work?

Controlled clinical trials

No controlled clinical trials of DCA in cancer patients are available.

Uncontrolled clinical trials

Please see table 1 for details of uncontrolled clinical trials of DCA for cancer.

Michelakis et al. conducted a phase I trial to evaluate the influence of DCA on glioblastoma (GBM) in five patients 11. Three patients received oral DCA in increasing doses between 6.25 mg/kg and 25 mg/kg body weight twice daily as a sole treatment and two in addition to radiotherapy and temozolomide. The authors reported a partial response in one out of three patients that solely received DCA. Based on the results of this trial, the evidence that DCA is efficacious against GBM is very weak.

Garon et al conducted a phase I trial to evaluate the efficacy and safety of DCA in the treatment of advanced solid tumors. A total of seven patients, one with metastatic breast cancer and six with metastatic non-small cell lung cancer (NSCLC) received oral DCA at 6.25mg/ kg body weight twice daily. The best objective response until termination of the study was a stable disease in one patient after eight weeks. The results of this study gave no indication for a clinically relevant effect of DCA against breast cancer and NSCLC 20.

Chu et al. performed a phase I clinical trial to evaluate the safety of DCA therapy and document possible tumor responses in 24 patients with advanced solid tumors refractory to treatment. Sixteen patients received oral DCA at 6.25mg/kg body weight twice daily for 28 days. In seven patients, DCA dose was escalated to 12,5mg / kg twice daily. Treatment was continued to a maximum of 28 days, until disease progression or unacceptable toxicity occurred. The best tumor responses reported were stable diseases in eight patients. Based on this phase I trial an effect of DCA in the treatment of advanced and treatment refractory solid tumors can neither be supported nor negated 21.

Dunbar et al was a phase I trial to evaluate safety and tumor response to DCA treatment in 13 patients with high grade glioma and two patients with brain metastasis from adenocarcinoma of the uterus and the lung. Patient received oral DCA at 8 mg/kg body weight twice daily for 4 weeks. Dosing of DCA dosing was adapted depending on the genotype of glutathione transferase zeta 1 (GSTZ1). The best objective tumor responses after four weeks of treatment were stable diseases in eight patients. Based on these results, a limited effect of DCA on glioblastoma or brain metastases could be hypothesized 22.

Case reports

Strum et al. contacted patients who reported responses of their cancers to DCA in internet forums and where possible assessed their medical records. One of the included patients was judged as being documented well enough to attribute a four year complete remission of a non-Hodgkin lymphoma relapse to the application of DCA 23.

Another author reported two cases and attributed a long term complete remission after relapse from stage IV follicular lymphoma and a partial remission of chemotherapy resistant medullary thyroid carcinoma to DCA in combination with thiamine 24,25.

In one case report DCA seemed to reduce swelling and pain from a metastasis of a poorly differentiated carcinoma 26.

Citation Timm Hoeres, Markus Horneber, CAM-Cancer Consortium. Dichloroacetate [online document]. http://ws.cam-cancer.org/The-Summaries/Dietary-approaches/Dichloroacetate. July 13, 2016.

References

  1. BG Chemie. Toxikologische Bewertung: Dichloressigsäure, Natriumdichloracetat. Toxikologische Bewertungen - Ausgabe 03/06 Nr. 188b, 1-138. 2006.
  2. Ammini, C. V. & Stacpoole, P. W. Biotransformation, Toxicology and Pharmacogenomics of Dichloroacetate. In : Gribble, G. W. (ed.), Naturally Occurring Organohalgoen Compounds – a Comprehensive Update. Berlin: Springer Verlag,  2003, pp. 215-34.
  3. Michelakis, E. D., Webster, L. & Mackey, J. R. Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer. Br J Cancer 2008;99:989-94.
  4. Stacpoole, P. W., Nagaraja, N. V. & Hutson, A. D. Efficacy of dichloroacetate as a lactate-lowering drug. J Clin Pharmacol 2003;43:683-91.
  5. Chinnery, P., Majamaa, K., Turnbull, D. & Thornburn, D. Treatment for mitochondrial disorders. Cochrane Database Syst Rev 2006;1:CD004426.
  6. Stacpoole, P. W., Henderson, G. N., Yan, Z., Cornett, R. & James, M. O. Pharmacokinetics, metabolism and toxicology of dichloroacetate. Drug Metab Rev 1998;30:499-539.
  7. Agbenyega T, et al. Population kinetics, efficacy, and sadfety of dichloroacetate for lactic acidosis due to severe malaria in children. J Clin Pharmacol 2003;43:386-96.
  8. Kankotia, S. and P. W. Stacpoole. Dichloroacetate and cancer: new home for an orphan drug? Biochim Biophys Acta 2014;1846:617-29.
  9. Shroads, A. L. et al. Age-dependent kinetics and metabolism of dichloroacetate: possible relevance to toxicity. J Pharmacol Exp Ther 2008;324:1163-71.
  10. Shroads, A. L., T. Langaee, B. S. Coats, T. L. Kurtz, J. R. Bullock, D. Weithorn, Y. Gong, D. A. Wagner, D. A. Ostrov, J. A. Johnson and P. W. Stacpoole . Human polymorphisms in the glutathione transferase zeta 1/maleylacetoacetate isomerase gene influence the toxicokinetics of dichloroacetate. J Clin Pharmacol 2012;52:837-49.
  11. Michelakis, E. D. et al. Metabolic modulation of glioblastoma with dichloroacetate. Sci Transl Med 2010;2:1-7.
  12. James, MO & Stacpoole, PW. Pharmacogenetic considerations with dichloroacetate dosing. Pharmacogenomics 2016;17:743-53.
  13. Gorsky D. The latest chapter in the seemingly never-ending saga of dichloroacetate as a cancer treatmenthttps://www.sciencebasedmedicine.org/the-latest-chapter-in-the-seemingly-never-ending-saga-of-dichloroacetate-as-a-cancer-treatment/ (accessed on May 30, 2016)
  14. Geddes, L. Do-it-yourself Chemotherapy Access. Cancer World November/December, 2007;38-42.
  15. Warburg, O., Posener, K. & Negelein, E. Über den Stoffwechsel der Carcinomzelle. Biochem Ztschr 1924;152:309-44.
  16. Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009;324:1029-33.
  17. Kim, J. W. & Dang, C. V. Cancer's molecular sweet tooth and the Warburg effect. Cancer Res 2006;66:8927-30.
  18. Mathupala, S. P., Ko, Y. H. & Pedersen, P. L. Hexokinase-2 bound to mitochondria: cancer's stygian link to the "Warburg Effect" and a pivotal target for effective therapy. Semin Cancer Biol 2009;19:17-24.
  19. U.S. Food and Drug Administration. Search Orphan Drug Designations and Approvals (http://www.accessdata.fda.gov/scripts/opdlisting/oopd/index.cfm [accessed on May 30, 2016].
  20. Garon, E. B., H. R. Christofk, W. Hosmer, C. D. Britten, A. Bahng, M. J. Crabtree, C. S. Hong, N. Kamranpour, S. Pitts, F. Kabbinavar, C. Patel, E. von Euw, A. Black, E. D. Michelakis, S. M. Dubinett and D. J. Slamon. Dichloroacetate should be considered with platinum-based chemotherapy in hypoxic tumors rather than as a single agent in advanced non-small cell lung cancer.  J Cancer Res Clin Oncol 2014;140:443-52.
  21. Chu, Q. S., R. Sangha, J. Spratlin, J. V. L, J. R. Mackey, A. J. McEwan, P. Venner and E. D. Michelakis. A phase I open-labeled, single-arm, dose-escalation, study of dichloroacetate (DCA) in patients with advanced solid tumors." Invest New Drugs 2015;33:603-10.
  22. Dunbar, E. M., B. S. Coats, A. L. Shroads, T. Langaee, A. Lew, J. R. Forder, J. J. Shuster, D. A. Wagner and P. W. Stacpoole. Phase 1 trial of dichloroacetate (DCA) in adults with recurrent malignant brain tumors. Invest New Drugs 2014;32:452-64.
  23. Strum, S. B., O. Adalsteinsson, R. R. Black, D. Segal, N. L. Peress and J. Waldenfels. "Case report: Sodium dichloroacetate (DCA) inhibition of the "Warburg Effect" in a human cancer patient: complete response in non-Hodgkin's lymphoma after disease progression with rituximab-CHOP." J Bioenerg Biomembr 2013;45:307-15.
  24. Flavin, D. Medullary thyroid carcinoma relapse reversed with dichloroacetate: A case report. Oncol Lett 2010;1:889-91.
  25. Flavin, D. F. Non-Hodgkin's Lymphoma Reversal with Dichloroacetate. Volume 2010, Article ID 414726, 4 pages.
  26. Khan A. Use of oral dichloroacetate for palliation of leg pain arising from metastatic poorly differentiated carcinoma: a case report. J Palliat Med 2011;14:973-7.
  27. Calvert, L. D. et al. Dichloroacetate enhances performance and reduces blood lactate during maximal cycle exercise in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2008;177:1090-4.
  28. Stacpoole, P. W. et al. Controlled clinical trial of dichloroacetate for treatment of congenital lactic acidosis in children. Pediatrics 2006;117:1519-31.
  29. Fox, A. W. et al. Reduction of serum lactate by sodium dichloroacetate, and human pharmacokinetic-pharmacodynamic relationships. J Pharmacol Exp Ther 1996;279:686-93.
  30. Krishna, S. et al. Pharmacokinetics and pharmacodynamics of dichloroacetate in children with lactic acidosis due to severe malaria. QJM 1995;88:341-9.
  31. Theodoratos, A. et al. Phenylalanine-induced leucopenia in genetic and dichloroacetic acid generated deficiency of glutathione transferase Zeta. Biochem Pharmacol 2009;77:1358-63.
  32. Stacpoole, P. W., Kurtz, T. L., Han, Z. & Langaee, T. Role of dichloroacetate in the treatment of genetic mitochondrial diseases. Adv Drug Deliv Rev 2008;60:1478-87.
  33. Kaufmann, P. et al. Dichloroacetate causes toxic neuropathy in MELAS: a randomized, controlled clinical trial. Neurology 2006;66:324-30.
  34. Brandsma, D., Dorlo, T. P., Haanen, J. H., Beijnen, J. H. & Boogerd, W. Severe encephalopathy and polyneuropathy induced by dichloroacetate. J Neurol 2010;257:2099-100.
  35. Felitsyn, N., Stacpoole, P. W. & Notterpek, L. Dichloroacetate causes reversible demyelination in vitro: potential mechanism for its neuropathic effect. J Neurochem 2007;100:429-36.
  36. Heshe, D. et al. Dichloroacetate metabolically targeted therapy defeats cytotoxicity of standard anticancer drugs. Cancer Chemother Pharmacol 2011;67:647-55.
  37. Stacpoole PW: The pharmacology of dichloroacetate. Metabolism 1989;38:1124-44.